Attenuation of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice by Licochalcone A
DOI:
https://doi.org/10.36560/18520252111Palavras-chave:
Licochalcone A, multiple sclerosis, cytokines, histopathology, experimental autoimmune encephalomyelitisResumo
Multiple sclerosis (MS) is an autoimmune inflammatory and demyelinating disease of the central nervous system (CNS) that affects more than 2.5 million people worldwide. The experimental autoimmune encephalomyelitis (EAE) is an appropriate and a well-establish model for studying the pathogenesis of MS. Licochalcone A (LicoA) is a chalcone obtained from the roots of Glycyrrhiza inflata (Fabaceae) that has in vitro immunomodulatory effects. EAE was induced in C57BL/6 mice with myelin oligodendrocyte glycoprotein and we have investigated the treatment of LicoA in this animal model. LicoA was isolated from G. inflata and was orally administered during the development of EAE. The capacity of absorption and distribution of LicoA, after gavage, to the brain was performed by HPLC. The clinical course and body weight were performed daily, cytokines (ELISA) and oxygen radicals production (NO and H2O2) were investigated. The CNS sections were stained by hematoxylin and eosin. After the treatment, by HPLC, at the first time, we analyzed the penetration between tissue/plasma, and our results showed that LicoA was present in serum and reached the mice brain with a good distribution. LicoA reduced clinical score and severity of EAE-mice, as well as inhibited H2O2, NO, TNF-α, IFN-γ and, mainly, IL-17 production. Histopathological analysis confirmed that LicoA treatment significantly reduced the numbers of inflammatory infiltrates and attenuates neurological damages in the CNS. These findings demonstrate that the oral treatment of LicoA significantly ameliorated the inflammatory signs associated with EAE, since it is effective at reducing both disease onset and severity.
Referências
Alipour, S., Amanallahi, P., Baradaran, B., Aghebati-Maleki, A., Soltani-Zangbar, M. S., & Aghebati-Maleki, L. (2024). Altered gene expression of miR-155 in peripheral blood mononuclear cells of Multiple sclerosis patients: Correlation with TH17 frequency, inflammatory cytokine profile and autoimmunity. Multiple Sclerosis and Related Disorders, 89, 105764. https://doi.org/10.1016/j.msard.2024.105764
Alves, C. C. S., Castro, S. B. R., Costa, C. F., Dias, A. T., Alves, C. J., Rodrigues, M. F., Teixeira, H. C., Almeida, M. V., & Ferreira, A. P. (2012). Anthraquinone derivative O,O′-bis-(3′-iodopropyl)-1,4-dihidroxyanthraquinone modulates immune response and improves experimental autoimmune encephalomyelitis. International Immunopharmacology, 14(2), 127–132. https://doi.org/10.1016/j.intimp.2012.06.013
Anavi, S., & Tirosh, O. (2020). iNOS as a metabolic enzyme under stress conditions. Free Radical Biology and Medicine, 146, 16–35. https://doi.org/10.1016/j.freeradbiomed.2019.10.411
Barfod, L., Kemp, K., Hansen, M., & Kharazmi, A. (2002). Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines. International Immunopharmacology, 2(4), 545–555. https://doi.org/10.1016/S1567-5769(01)00202-8
Bjelobaba, I., Begovic‐Kupresanin, V., Pekovic, S., & Lavrnja, I. (2018). Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 96(6), 1021–1042. https://doi.org/10.1002/jnr.24224
Chen, G., & Shannon, M. F. (2013). Transcription Factors and Th17 Cell Development in Experimental Autoimmune Encephalomyelitis. Critical Reviews in Immunology, 33(2), 165–182. https://doi.org/10.1615/CritRevImmunol.2013006959
Cheng, Y., Sun, L., Xie, Z., Fan, X., Cao, Q., Han, J., Zhu, J., & Jin, T. (2017). Diversity of immune cell types in multiple sclerosis and its animal model: Pathological and therapeutic implications. Journal of Neuroscience Research, 95(10), 1973–1983. https://doi.org/10.1002/jnr.24023
Chen, X., Liu, Z., Meng, R., Shi, C., & Guo, N. (2017). Antioxidative and anticancer properties of Licochalcone A from licorice. Journal of Ethnopharmacology, 198, 331–337. https://doi.org/10.1016/j.jep.2017.01.028
Chen, X., Pi, R., Zou, Y., Liu, M., Ma, X., Jiang, Y., Mao, X., & Hu, X. (2010). Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole, a natural coumarin. European Journal of Pharmacology, 629(1–3), 40–46. https://doi.org/10.1016/j.ejphar.2009.12.008
Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B.-M., Tato, C., Yoshimura, A., Hennighausen, L., & O’Shea, J. J. (2006). Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proceedings of the National Academy of Sciences, 103(21), 8137–8142. https://doi.org/10.1073/pnas.0600666103
Chu, F., Shi, M., Zheng, C., Shen, D., Zhu, J., Zheng, X., & Cui, L. (2018). The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 318, 1–7. https://doi.org/10.1016/j.jneuroim.2018.02.015
Chu, X., Ci, X., Wei, M., Yang, X., Cao, Q., Guan, M., Li, H., Deng, Y., Feng, H., & Deng, X. (2012). Licochalcone A Inhibits Lipopolysaccharide-Induced Inflammatory Response in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 60(15), 3947–3954. https://doi.org/10.1021/jf2051587
Corrêa, J. O. do A., Aarestrup, B. J. V., & Aarestrup, F. M. (2010). Effect of thalidomide and pentoxifylline on experimental autoimmune encephalomyelitis (EAE). Experimental Neurology, 226(1), 15–23. https://doi.org/10.1016/j.expneurol.2010.04.007
Dias, D., Fontes, L., Crotti, A., Aarestrup, B., Aarestrup, F., Da Silva Filho, A., & Corrêa, J. (2014). Copaiba Oil Suppresses Inflammatory Cytokines in Splenocytes of C57Bl/6 Mice Induced with Experimental Autoimmune Encephalomyelitis (EAE). Molecules, 19(8), 12814–12826. https://doi.org/10.3390/molecules190812814
Filho, A. A. da S., Bueno, P. C. P., Gregório, L. E., Silva, M. L. A. e, Albuquerque, S., & Bastos, J. K. (2004). In-vitro trypanocidal activity evaluation of crude extract and isolated compounds from Baccharis dracunculifolia D. C. (Asteraceae). Journal of Pharmacy and Pharmacology, 56(9), 1195–1199. https://doi.org/10.1211/0022357044067
Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N., & Mills, K. H. G. (2010). T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical and Experimental Immunology, 162(1), 1–11. https://doi.org/10.1111/j.1365-2249.2010.04143.x
Fontes, L. B. A., Dias, D. dos S., Aarestrup, B. J. V., Aarestrup, F. M., Da Silva Filho, A. A., & Corrêa, J. O. do A. (2017). β -Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomedicine & Pharmacotherapy, 91, 257–264. https://doi.org/10.1016/j.biopha.2017.04.092
Fontes, L. B. A., dos Santos Dias, D., de Carvalho, L. S. A., Mesquita, H. L., da Silva Reis, L., Dias, A. T., Da Silva Filho, A. A., & do Amaral Corrêa, J. O. (2014). Immunomodulatory effects of licochalcone A on experimental autoimmune encephalomyelitis. Journal of Pharmacy and Pharmacology, 66(6), 886–894. https://doi.org/10.1111/jphp.12212
Funakoshi-Tago, M., Tago, K., Nishizawa, C., Takahashi, K., Mashino, T., Iwata, S., Inoue, H., Sonoda, Y., & Kasahara, T. (2008). Licochalcone A is a potent inhibitor of TEL-Jak2-mediated transformation through the specific inhibition of Stat3 activation. Biochemical Pharmacology, 76(12), 1681–1693. https://doi.org/10.1016/j.bcp.2008.09.012
Furusawa, J., Funakoshi-Tago, M., Tago, K., Mashino, T., Inoue, H., Sonoda, Y., & Kasahara, T. (2009). Licochalcone A significantly suppresses LPS signaling pathway through the inhibition of NF-κB p65 phosphorylation at serine 276. Cellular Signalling, 21(5), 778–785. https://doi.org/10.1016/j.cellsig.2009.01.021
Gheidari, D., Mehrdad, M., & Hoseini, F. (2024). Virtual screening, molecular docking, MD simulation studies, DFT calculations, ADMET, and drug likeness of Diaza-adamantane as potential MAPKERK inhibitors. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1360226
Giacoppo, S., Galuppo, M., Lombardo, G. E., Ulaszewska, M. M., Mattivi, F., Bramanti, P., Mazzon, E., & Navarra, M. (2015). Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia, 103, 171–186. https://doi.org/10.1016/j.fitote.2015.04.003
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126(1), 131–138. https://doi.org/10.1016/0003-2697(82)90118-X
Guo, K., Mou, X., Huang, J., Xiong, N., & Li, H. (2014). Trans-Caryophyllene Suppresses Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-κB Activation in Microglia. Journal of Molecular Neuroscience, 54(1), 41–48. https://doi.org/10.1007/s12031-014-0243-5
Haraguchi, H., Ishikawa, H., Mizutani, K., Tamura, Y., & Kinoshita, T. (1998). Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorganic & Medicinal Chemistry, 6(3), 339–347. https://doi.org/10.1016/S0968-0896(97)10034-7
Huang, B., Liu, J., Ju, C., Yang, D., Chen, G., Xu, S., Zeng, Y., Yan, X., Wang, W., Liu, D., & Fu, S. (2017). Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson’s Disease Models. International Journal of Molecular Sciences, 18(10), 2043. https://doi.org/10.3390/ijms18102043
Hu, J., & Liu, J. (2016). Licochalcone A Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting NF-κB Activation. Inflammation, 39(2), 569–574. https://doi.org/10.1007/s10753-015-0281-3
Kakalacheva, K., & Lünemann, J. D. (2011). Environmental triggers of multiple sclerosis. FEBS Letters, 585(23), 3724–3729. https://doi.org/10.1016/j.febslet.2011.04.006
Karczewski, J., Dobrowolska, A., Rychlewska-Hańczewska, A., & Adamski, Z. (2016). New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis. Autoimmunity, 49(7), 435–450. https://doi.org/10.3109/08916934.2016.1166214
Kim, S. S., Lim, J., Bang, Y., Gal, J., Lee, S.-U., Cho, Y.-C., Yoon, G., Kang, B. Y., Cheon, S. H., & Choi, H. J. (2012). Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: therapeutic relevance to neurodegenerative disease. The Journal of Nutritional Biochemistry, 23(10), 1314–1323. https://doi.org/10.1016/j.jnutbio.2011.07.012
Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K., & Iwakura, Y. (2006). IL-17 Plays an Important Role in the Development of Experimental Autoimmune Encephalomyelitis. The Journal of Immunology, 177(1), 566–573. https://doi.org/10.4049/jimmunol.177.1.566
Kong, W., Li, H., Tuma, R. F., & Ganea, D. (2014). Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cellular Immunology, 287(1), 1–17. https://doi.org/10.1016/j.cellimm.2013.11.002
Kwon, H.-S., Park, J. H., Kim, D. H., Kim, Y. H., Park, J. H. Y., Shin, H.-K., & Kim, J.-K. (2008). Licochalcone A isolated from licorice suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. Journal of Molecular Medicine, 86(11), 1287–1295. https://doi.org/10.1007/s00109-008-0395-2
Lassmann, H. (2011). Pathophysiology of inflammation and tissue injury in multiple sclerosis: What are the targets for therapy. Journal of the Neurological Sciences, 306(1–2), 167–169. https://doi.org/10.1016/j.jns.2010.07.023
Lee, E., Chanamara, S., Pleasure, D., & Soulika, A. M. (2012). IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci. Journal of Neuroinflammation, 9(1), 510. https://doi.org/10.1186/1742-2094-9-7
Leiper, J., & Nandi, M. (2011). The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nature Reviews Drug Discovery, 10(4), 277–291. https://doi.org/10.1038/nrd3358
Liu, D., Huo, X., Gao, L., Zhang, J., Ni, H., & Cao, L. (2018). NF-κB and Nrf2 pathways contribute to the protective effect of Licochalcone A on dextran sulphate sodium-induced ulcerative colitis in mice. Biomedicine & Pharmacotherapy, 102, 922–929. https://doi.org/10.1016/j.biopha.2018.03.130
Liu, M., Du, Y., & Gao, D. (2024). Licochalcone A: a review of its pharmacology activities and molecular mechanisms. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1453426
Lv, H., Yang, H., Wang, Z., Feng, H., Deng, X., Cheng, G., & Ci, X. (2019). Nrf2 signaling and autophagy are complementary in protecting lipopolysaccharide/d-galactosamine-induced acute liver injury by licochalcone A. Cell Death & Disease, 10(4), 313. https://doi.org/10.1038/s41419-019-1543-z
Manzano, P. da S., Oliveira, C. V. de, Beserra, A. M. S. e S., Violante, I. M. P., Santos, R. A. dos, Almeida, T. W., Rausch, R. A. V. Q. G., & Vieira, E. M. M. (2016). Toxicidade aguda e avaliação anatomopatológica em camundongos tratados com extrato da Qualea grandiflora Mart. ARCHIVES OF HEALTH INVESTIGATION, 5(1). https://doi.org/10.21270/archi.v5i1.1302
McGinley, A. M., Edwards, S. C., Raverdeau, M., & Mills, K. H. G. (2018). Th17 cells, γδ T cells and their interplay in EAE and multiple sclerosis. Journal of Autoimmunity, 87, 97–108. https://doi.org/10.1016/j.jaut.2018.01.001
Mix, E., Meyer-Rienecker, H., Hartung, H.-P., & Zettl, U. K. (2010). Animal models of multiple sclerosis—Potentials and limitations. Progress in Neurobiology, 92(3), 386–404. https://doi.org/10.1016/j.pneurobio.2010.06.005
Nadelmann, L., Tjørnelund, J., Christensen, E., & Hansen, S. H. (1997). High-performance liquid chromatographic determination of licochalcone A and its metabolites in biological fluids. Journal of Chromatography B: Biomedical Sciences and Applications, 695(2), 389–400. https://doi.org/10.1016/S0378-4347(97)00189-8
Newman, D. J., & Cragg, G. M. (2012). Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335. https://doi.org/10.1021/np200906s
Olejnik, P., Roszkowska, Z., Adamus, S., & Kasarełło, K. (2024). Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacological Reports. https://doi.org/10.1007/s43440-024-00642-0
O’Shea, J. J., Steward-Tharp, S. M., Laurence, A., Watford, W. T., Wei, L., Adamson, A. S., & Fan, S. (2009). Signal transduction and Th17 cell differentiation. Microbes and Infection, 11(5), 599–611. https://doi.org/10.1016/j.micinf.2009.04.007
Papiri, G., D’Andreamatteo, G., Cacchiò, G., Alia, S., Silvestrini, M., Paci, C., Luzzi, S., & Vignini, A. (2023). Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Current Issues in Molecular Biology, 45(2), 1443–1470. https://doi.org/10.3390/cimb45020094
Peron, J. P. S., Yang, K., Chen, M.-L., Brandao, W. N., Basso, A. S., Commodaro, A. G., Weiner, H. L., & Rizzo, L. V. (2010). Oral tolerance reduces Th17 cells as well as the overall inflammation in the central nervous system of EAE mice. Journal of Neuroimmunology, 227(1–2), 10–17. https://doi.org/10.1016/j.jneuroim.2010.06.002
Pick, E., & Mizel, D. (1981). Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods, 46(2), 211–226. https://doi.org/10.1016/0022-1759(81)90138-1
Poppell, M., Hammel, G., & Ren, Y. (2023). Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. International Journal of Molecular Sciences, 24(6), 5925. https://doi.org/10.3390/ijms24065925
Quintanilha, A. (1988). Reactive oxygen species in chemistry, biology, and medicine. Plenum Press.
Rasool, M., Malik, A., Qureshi, M. S., Manan, A., Pushparaj, P. N., Asif, M., Qazi, M. H., Qazi, A. M., Kamal, M. A., Gan, S. H., & Sheikh, I. A. (2014). Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds. Evidence-Based Complementary and Alternative Medicine, 2014(1). https://doi.org/10.1155/2014/979730
Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine, 49(11), 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
Rodgers, J. M., & Miller, S. D. (2012). Cytokine control of inflammation and repair in the pathology of multiple sclerosis. The Yale Journal of Biology and Medicine, 85(4), 447–468.
Shen, F., Zhang, Y., Li, C., Yang, H., & Yuan, P. (2024). Network pharmacology and experimental verification of the mechanism of licochalcone A against Staphylococcus aureus pneumonia. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1369662
Siffrin, V., Radbruch, H., Glumm, R., Niesner, R., Paterka, M., Herz, J., Leuenberger, T., Lehmann, S. M., Luenstedt, S., Rinnenthal, J. L., Laube, G., Luche, H., Lehnardt, S., Fehling, H.-J., Griesbeck, O., & Zipp, F. (2010). In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis. Immunity, 33(3), 424–436. https://doi.org/10.1016/j.immuni.2010.08.018
Su, X., Li, T., Liu, Z., Huang, Q., Liao, K., Ren, R., Lu, L., Qi, X., Wang, M., Chen, J., Zhou, H., Leung, E. L.-H., Pan, H., Liu, J., Wang, H., Huang, L., & Liu, L. (2018). Licochalcone A activates Keap1-Nrf2 signaling to suppress arthritis via phosphorylation of p62 at serine 349. Free Radical Biology and Medicine, 115, 471–483. https://doi.org/10.1016/j.freeradbiomed.2017.12.004
Wang, X., Ma, C., Wu, J., & Zhu, J. (2013). Roles of T helper 17 cells and interleukin‐17 in neuroautoimmune diseases with emphasis on multiple sclerosis and Guillain‐Barré syndrome as well as their animal models. Journal of Neuroscience Research, 91(7), 871–881. https://doi.org/10.1002/jnr.23233
Yang, X. O., Panopoulos, A. D., Nurieva, R., Chang, S. H., Wang, D., Watowich, S. S., & Dong, C. (2007). STAT3 Regulates Cytokine-mediated Generation of Inflammatory Helper T Cells. Journal of Biological Chemistry, 282(13), 9358–9363. https://doi.org/10.1074/jbc.C600321200
Zha, Z., Liu, S., Liu, Y., Li, C., & Wang, L. (2022). Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants, 11(8), 1495. https://doi.org/10.3390/antiox11081495
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Scientific Electronic Archives

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A revista se reserva o direito de fazer alterações nas regras originais, na ortografia e na ordem gramatical, a fim de manter o idioma de culto padrão, respeitando, no entanto, o estilo dos autores. Os artigos publicados são de propriedade da revista Scientific Electronic Archives, tornando-se sua reimpressão total ou parcial, sujeitos à autorização expressa da direção da revista. A fonte original da publicação deve ser mantida. Os originais não serão devolvidos aos autores. As opiniões expressas pelos autores dos artigos são de sua exclusiva responsabilidade.
The journal reserves the right to make changes to the original rules, spelling and grammatical order, in order to keep the language of worship default, respecting, however, the style of the authors. Articles published are the property of Scientific Electronic Archives magazine, becoming its total or partial reprint, subject to the express authorization of the direction of the journal. The original source of publication should be retained. The originals will not be returned to the authors. Opinions expressed by authors of articles are solely your responsibility.
This journal uses the License Creative Commons Atribuição 4.0 Internacional.